organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1*R*,4*S*)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine

Guy Crundwell* and Neil Glagovich

Department of Chemistry and Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA Correspondence e-mail: crundwellg@ccsu.edu

Received 8 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.163; data-to-parameter ratio = 33.6.

The title compound, C₁₆H₁₆Cl₂N₂, was synthesized by the condensation reaction between 4,5-dichloro-o-phenylenediamine and (1R)-(-)-camphorquinone in boiling acetic acid. The two crystallographically independent molecules in the unit cell are related by a pseudo-inversion center.

Related literature

Steel & Fitchett (2000, 2006) illustrate the use of stereochemically active quinoxalines in extended metal-ligand networks.

Experimental

Crystal data

 $C_{16}H_{16}Cl_2N_2$ $M_r = 307.21$ Monoclinic, P2 a = 6.9741 (3) Å b = 13.0892 (5) Å c = 16.9594 (5) Å $\beta = 101.701 \ (3)^{\circ}$

 $V = 1515.97 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.42 \text{ mm}^{-1}$ T = 293 K $0.32 \times 0.18 \times 0.11 \text{ mm}$

Data collection

```
Oxford Xcalibur Sapphire3
  diffractometer
Absorption correction: multi-scan
  (CrvsAlis PRO; Oxford
  Diffraction, 2009)
  T_{\min} = 0.897, T_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.163$	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.93	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
12344 reflections	Absolute structure: Flack (1983),
367 parameters	with 5825 Friedel pairs
1 restraint	Flack parameter: 0.03 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

42674 measured reflections

 $R_{\rm int} = 0.032$

12344 independent reflections

7343 reflections with $I > 2\sigma(I)$

This research was funded by a CCSU-AAUP research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2314).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Steel, P. J. & Fitchett, C. M. (2000). New J. Chem. 24, 945-947.
- Steel, P. J. & Fitchett, C. M. (2006). Dalton Trans. pp. 4886-4888.

Acta Cryst. (2010). E66, o3042 [doi:10.1107/S1600536810044016]

(1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine

G. Crundwell and N. Glagovich

Comment

Nitrogen-containing aromatic heterocycles have often been used as ligands in one-, two-, and three dimensional metal–organic coordination polymers. There has been interest in developing chiral nitrogen-containing aromatic heterocycles in order to have greater design control over the assembly of these extended networks in the solid state (Steel & Fitchett, 2000). As a subset of nitrogen-containing aromatic heterocycles, quinoxalines, pyrazino[2,3-g]quinoxalines, and phenazines have shown the ability to bind to a variety of metals and are, as ligands, easy to synthesize *via* condensation reactions between ethanediones/quinones and diamines/tetraamines (Steel & Fitchett, 2006). In this paper we report the synthesis and structure of the chiral (1*R*,4S)-7,8-dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl-1,4-methanophenazine.

The title compound crystallizes in a chiral setting in the space group P2₁ with two crystallographically independent molecules in the asymmetric unit, Fig. 1. The two molecules are closely related by a pseudo inversion center located near coordinates x = 0.263, y = 0.461, z = 0.252. All bond distances and angles fall within expected values and there are no classic hydrogen bonds; however as can be seen in Fig. 2, one of the molecules packs with a slight bend in the quinoxaline molecy. Fig. 3 shows the molecular overlay of the two molecules in the asymmetric unit.

Experimental

To a 150 ml round bottom flask equipped with a reflux condenser was added 2.9 g (0.0120 mol) (1R)-(-)-camphorquinone, 2.77 g (0.0156 mol) 4,5-dichloro-*o*-phenylenediamine, and 50 ml glacial acetic acid. The mixture was heated to reflux for 3 h, and was then poured over ice to precipitate the crude product. After isolation *via* vacuum filtration, the crude product was recrystallized from methanol to yield 2.79 g (0.00908 mol) 3,4-dichlorocamphorquinoxaline (75% yield).

MP (K): 422.3-424.0; IR (CHCl₃): 3086, 2051, 1521, 1404, 12635, 1166, 1118, 890, 876 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.13 (*s*, 1H), 8.06 (*s*, 1H), 3.04 (*d*, 1H, *J* = 4.6 Hz), 2.31 (*dtd*, 1H, *J* = 4.6 Hz, *J* = 8 Hz, *J* = 12 Hz), 2.06 (*dq*, 1H, *J* = 8 Hz, *J* = 12 Hz), 1.40 (*s*, 3H), 1.39 (*q*, 2H, *J* = 10 Hz), 1.11 (*s*, 3H), 0.60 (*s*, 3H); ¹³C NMR (300 MHz, CDCl₃): δ 166.8, 165.0, 140.4, 140.3, 132.2, 129.7, 129.5, 54.3, 54.0, 53.3, 31.8, 24.6, 20.4, 18.5, 10.0; UV/Vis (CH₂Cl₂; λ_{max}) 260, 267, 365; MS (calculated for C₁₆H₁₆Cl₂N₂): *M*⁺: 306, measured: 306.

Refinement

H atoms were included in calculated positions with C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon and were included in the refinement in riding motion approximation with $U_{iso} = 1.2U_{eq}$ of the carrier atom.

Figures

Fig. 1. A view of (1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11- trimethyl-1,4-methanophenazine (Farrugia, 1997). There are two molecules in the asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level. Labels for atoms C10 and C12 in the first molecule and atom C28 in the second molecule were omitted for clarity.

Fig. 2. A view of the packing nearly along (100) showing both molecules as well as the slight quinoxaline plane bending in the first (Spek, 2009).

(1R,4S)-7,8-Dichloro-1,2,3,4-tetrahydro-1,11,11-trimethyl- 1,4-methanophenazine

Crystal data

$C_{16}H_{16}Cl_2N_2$	F(000) = 640
$M_r = 307.21$	$D_{\rm x} = 1.346 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Melting point: 422 K
Hall symbol: P 2yb	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.9741 (3) Å	Cell parameters from 15315 reflections
b = 13.0892 (5) Å	$\theta = 4.2 - 35.0^{\circ}$
c = 16.9594 (5) Å	$\mu = 0.42 \text{ mm}^{-1}$
$\beta = 101.701 \ (3)^{\circ}$	T = 293 K
$V = 1515.97 (10) \text{ Å}^3$	Block, white
Z = 4	$0.32 \times 0.18 \times 0.11 \text{ mm}$

Data collection

Oxford Xcalibur Sapphire3 diffractometer	12344 independent reflections
Radiation source: Enhance (Mo) X-ray Source	7343 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
Detector resolution: 16.1790 pixels mm ⁻¹	$\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -20 \rightarrow 20$
$T_{\min} = 0.897, T_{\max} = 1.000$	$l = -27 \rightarrow 27$
42674 measured reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.163$	$w = 1/[\sigma^2(F_o^2) + (0.0946P)^2 + 0.0917P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.93	$(\Delta/\sigma)_{\rm max} < 0.001$
12344 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
367 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), with 5825 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.03 (5)

Special details

Experimental. Absorption correction: CrysAlis Pro (Oxford Diffraction Ltd., 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Hydrogen atoms were included in calculated positions with a C—H distances of 0.93 Å, 0.96 Å, 0.97 Å, and 0.98 Å based upon type of carbon. Hydrogen atoms were included in the refinement in riding motion approximation with a U_{iso} of either $1.2U_{eq}$ or $1.5U_{eq}$ of the carrier atom depending upon type of carbon.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
C1	0.1545 (3)	0.45050 (16)	0.49934 (12)	0.0398 (4)
N1	0.2970 (3)	0.42161 (16)	0.46481 (11)	0.0460 (4)
C2	0.2335 (3)	0.38885 (17)	0.38582 (12)	0.0402 (4)
C3	0.3738 (3)	0.35025 (19)	0.34450 (14)	0.0465 (5)
Н3	0.5062	0.3515	0.3684	0.056*
C4	0.3134 (4)	0.31076 (17)	0.26865 (14)	0.0442 (5)
Cl1	0.48375 (11)	0.25649 (6)	0.22037 (4)	0.0677 (2)
C5	0.1167 (4)	0.31228 (18)	0.23080 (12)	0.0451 (5)
Cl2	0.03974 (13)	0.25733 (7)	0.13693 (4)	0.0764 (2)
C6	-0.0217 (4)	0.35345 (19)	0.26854 (13)	0.0471 (5)
H6	-0.1519	0.3572	0.2418	0.057*
C7	0.0347 (3)	0.39014 (16)	0.34825 (12)	0.0382 (4)
N2	-0.1129 (3)	0.42215 (15)	0.38665 (11)	0.0423 (4)
C8	-0.0476 (3)	0.45064 (16)	0.46059 (12)	0.0393 (4)

C9	-0.1600 (4)	0.48131 (19)	0.52398 (14)	0.0467 (5)
Н9	-0.2939	0.5059	0.5043	0.056*
C10	-0.1369 (4)	0.38915 (18)	0.58179 (15)	0.0521 (5)
H10A	-0.1703	0.3259	0.5524	0.063*
H10B	-0.2196	0.3966	0.6211	0.063*
C11	0.0802 (4)	0.39084 (19)	0.62275 (14)	0.0534 (6)
H11A	0.1447	0.3281	0.6122	0.064*
H11B	0.0956	0.3994	0.6805	0.064*
C12	0.1656 (4)	0.48392 (19)	0.58474 (13)	0.0467 (5)
C13	0.3638 (5)	0.5211 (3)	0.62876 (18)	0.0753 (9)
H13A	0.4578	0.4670	0.6314	0.113*
H13B	0.3556	0.5416	0.6823	0.113*
H13C	0.4038	0.5782	0.6005	0.113*
C14	-0.0131 (4)	0.55950 (18)	0.57193 (13)	0.0489 (5)
C15	0.0151 (6)	0.6545 (2)	0.52444 (19)	0.0738 (9)
H15A	0.0376	0.6351	0.4725	0.111*
H15B	0.1258	0.6923	0.5529	0.111*
H15C	-0.1001	0.6963	0.5179	0.111*
C16	-0.0675 (5)	0.5936 (2)	0.65206 (17)	0.0650 (7)
H16A	0.0376	0.6334	0.6826	0.097*
H16B	-0.0892	0.5344	0.6825	0.097*
H16C	-0.1846	0.6341	0.6407	0.097*
C17	0.3327 (3)	0.43610 (18)	0.00994 (12)	0.0440 (5)
N3	0.1985 (3)	0.47672 (17)	0.04292 (11)	0.0496 (5)
C18	0.2727 (3)	0.52064 (17)	0.11783 (12)	0.0396 (4)
C19	0.1397 (3)	0.56594 (19)	0.15972 (13)	0.0459 (5)
H19	0.0066	0.5669	0.1370	0.055*
C20	0.2070 (3)	0.60867 (17)	0.23410 (13)	0.0426 (5)
C13	0.04203 (10)	0.66515 (6)	0.28452 (4)	0.06479 (19)
C21	0.4066 (4)	0.60690 (17)	0.26942 (13)	0.0445 (5)
Cl4	0.49046 (12)	0.66082 (7)	0.36273 (4)	0.0725 (2)
C22	0.5387 (4)	0.56247 (18)	0.22961 (13)	0.0456 (5)
H22	0.6712	0.5610	0.2534	0.055*
C23	0.4732 (3)	0.51941 (16)	0.15314 (12)	0.0391 (4)
N4	0.6126 (3)	0.47573 (15)	0.11472 (11)	0.0463 (4)
C24	0.5377 (3)	0.43543 (16)	0.04548 (12)	0.0413 (4)
C25	0.6353 (4)	0.37835 (19)	-0.01252(13)	0.0498 (5)
H25	0.7758	0.3907	-0.0074	0.060*
C26	0.5749 (5)	0.2668 (2)	-0.00338 (16)	0.0633 (7)
H26A	0.6464	0.2209	-0.0319	0.076*
H26B	0.5978	0.2470	0.0529	0.076*
C27	0.3554 (5)	0.2660 (2)	-0.04104 (17)	0.0693 (8)
H27A	0.2791	0.2455	-0.0018	0.083*
H27B	0.3277	0.2197	-0.0866	0.083*
C28	0.3087 (4)	0.3782 (2)	-0.06852 (13)	0.0540 (6)
C29	0.1155 (5)	0.3946 (4)	-0.12606 (19)	0.0893 (12)
H29A	0.0101	0.3769	-0.0999	0.134*
H29B	0.1097	0.3523	-0.1727	0.134*
H29C	0.1037	0.4650	-0.1421	0.134*

C30	0.5031 (4)	0.40956 (18)	-0.09395 (13)	0.0495 (5)
C31	0.5182 (6)	0.5232 (2)	-0.11237 (17)	0.0722 (9)
H31A	0.6463	0.5377	-0.1221	0.108*
H31B	0.4964	0.5627	-0.0673	0.108*
H31C	0.4214	0.5405	-0.1592	0.108*
C32	0.5429 (5)	0.3497 (2)	-0.16611 (15)	0.0638 (7)
H32A	0.4404	0.3628	-0.2121	0.096*
H32B	0.5470	0.2780	-0.1540	0.096*
H32C	0.6662	0.3706	-0.1777	0.096*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0469 (11)	0.0376 (10)	0.0361 (9)	-0.0027 (8)	0.0115 (8)	-0.0006 (7)
N1	0.0440 (10)	0.0562 (11)	0.0383 (8)	-0.0062 (8)	0.0098 (7)	-0.0093 (8)
C2	0.0465 (11)	0.0411 (10)	0.0354 (9)	-0.0067 (9)	0.0142 (8)	-0.0013 (8)
C3	0.0435 (12)	0.0503 (13)	0.0499 (12)	-0.0078 (10)	0.0193 (9)	-0.0088 (10)
C4	0.0569 (13)	0.0377 (10)	0.0449 (11)	-0.0050 (9)	0.0270 (10)	0.0006 (9)
Cl1	0.0768 (4)	0.0686 (4)	0.0686 (4)	-0.0012 (3)	0.0402 (3)	-0.0185 (4)
C5	0.0673 (14)	0.0421 (11)	0.0277 (9)	-0.0043 (10)	0.0141 (9)	0.0011 (8)
Cl2	0.0963 (5)	0.0933 (5)	0.0377 (3)	0.0067 (5)	0.0092 (3)	-0.0173 (3)
C6	0.0516 (13)	0.0508 (13)	0.0364 (10)	0.0011 (10)	0.0028 (9)	0.0022 (9)
C7	0.0448 (11)	0.0364 (10)	0.0349 (9)	0.0002 (8)	0.0119 (8)	0.0046 (8)
N2	0.0438 (10)	0.0466 (10)	0.0364 (8)	0.0065 (8)	0.0076 (7)	-0.0009 (7)
C8	0.0435 (11)	0.0374 (10)	0.0390 (9)	0.0035 (8)	0.0132 (8)	0.0026 (8)
C9	0.0513 (12)	0.0463 (11)	0.0464 (11)	0.0062 (9)	0.0193 (9)	-0.0040 (9)
C10	0.0673 (15)	0.0422 (11)	0.0545 (12)	-0.0003 (10)	0.0304 (11)	-0.0004 (10)
C11	0.0784 (17)	0.0469 (12)	0.0384 (10)	0.0112 (11)	0.0205 (11)	0.0076 (9)
C12	0.0568 (13)	0.0491 (12)	0.0354 (9)	-0.0005 (10)	0.0118 (9)	-0.0071 (9)
C13	0.0713 (19)	0.102 (2)	0.0514 (15)	-0.0163 (17)	0.0087 (13)	-0.0273 (16)
C14	0.0688 (14)	0.0381 (11)	0.0431 (10)	0.0026 (10)	0.0185 (10)	-0.0035 (9)
C15	0.122 (3)	0.0364 (13)	0.0670 (17)	-0.0035 (16)	0.0291 (18)	0.0021 (12)
C16	0.091 (2)	0.0517 (14)	0.0576 (14)	0.0095 (14)	0.0271 (14)	-0.0129 (12)
C17	0.0555 (12)	0.0448 (11)	0.0320 (9)	-0.0028 (10)	0.0094 (8)	-0.0052 (8)
N3	0.0462 (11)	0.0618 (12)	0.0403 (9)	0.0016 (9)	0.0078 (8)	-0.0121 (9)
C18	0.0440 (11)	0.0406 (10)	0.0345 (9)	-0.0013 (8)	0.0088 (8)	-0.0049 (8)
C19	0.0445 (12)	0.0550 (13)	0.0389 (10)	0.0013 (10)	0.0104 (9)	-0.0075 (10)
C20	0.0554 (12)	0.0366 (10)	0.0391 (10)	-0.0022 (9)	0.0174 (9)	-0.0054 (8)
C13	0.0682 (4)	0.0729 (4)	0.0587 (4)	0.0040 (3)	0.0257 (3)	-0.0225 (3)
C21	0.0595 (13)	0.0402 (11)	0.0344 (9)	-0.0056 (10)	0.0108 (9)	-0.0050 (8)
Cl4	0.0801 (4)	0.0897 (5)	0.0448 (3)	-0.0031 (4)	0.0059 (3)	-0.0286 (3)
C22	0.0523 (13)	0.0483 (12)	0.0360 (10)	-0.0011 (10)	0.0083 (9)	-0.0055 (9)
C23	0.0496 (12)	0.0366 (10)	0.0316 (9)	-0.0007 (8)	0.0094 (8)	0.0002 (8)
N4	0.0511 (11)	0.0484 (10)	0.0399 (9)	0.0044 (9)	0.0103 (8)	-0.0033 (8)
C24	0.0527 (12)	0.0368 (10)	0.0358 (9)	0.0050 (9)	0.0126 (8)	-0.0002 (8)
C25	0.0638 (15)	0.0473 (12)	0.0420 (10)	0.0069 (11)	0.0194 (10)	-0.0035 (9)
C26	0.098 (2)	0.0417 (12)	0.0532 (13)	0.0098 (13)	0.0226 (13)	0.0012 (10)
C27	0.102 (2)	0.0506 (15)	0.0646 (15)	-0.0217 (15)	0.0385 (15)	-0.0184 (12)

Ga a			0.000= (1.0)		0.0100 (0)	
C28	0.0587 (14)	0.0658 (15)	0.0387 (10)	-0.0009 (12)	0.0130 (9)	-0.0165 (10)
C29	0.073 (2)	0.137(3)	0.0522 (16)	0.011 (2)	-0.0005 (14)	-0.0383 (19)
C30	0.0681 (15)	0.0456 (12)	0.0371 (9)	0.0031 (10)	0.0164 (9)	-0.0024 (8)
C31	0.116 (3)	0.0505 (15)	0.0551 (15)	0.0064 (15)	0.0300 (16)	0.0097 (12)
C32	0.088 (2)	0.0659 (17)	0.0417 (11)	0.0049 (14)	0.0243 (12)	-0.0104 (11)
Geometric param	neters (Å, °)					
C1—N1		1.307 (3)	C17—	-N3	1.297	(3)
C1—C8		1.429 (3)	C17—	-C24	1.435	(3)
C1—C12		1.500 (3)	C17—	-C28	1.511	(3)
N1—C2		1.391 (3)	N3—0	C18	1.395	(3)
С2—С3		1.408 (3)	C18—	-C19	1.409	(3)
С2—С7		1.403 (3)	C18—	-C23	1.405	(3)
C3—C4		1.371 (3)	C19—	-C20	1.373	(3)
С3—Н3		0.9300	C19—	-H19	0.930	0
C4—C5		1.392 (3)	C20—	-C21	1.399	(3)
C4—Cl1		1.726 (2)	C20—	-C13	1.732	(2)
C5—C6		1.372 (3)	C21—	-C22	1.377	(3)
C5—Cl2		1.730 (2)	C21—	-Cl4	1.723	(2)
С6—С7		1.413 (3)	C22—	-C23	1.403	(3)
С6—Н6		0.9300	C22—	-H22	0.930	0
C7—N2		1.390 (3)	C23—	-N4	1.398	(3)
N2—C8		1.299 (3)	N4—0	C24	1.297	(3)
С8—С9		1.508 (3)	C24—	-C25	1.503	(3)
C9—C10		1.542 (3)	C25—	-C26	1.536	(4)
C9—C14		1.556 (3)	C25—	-C30	1.551	(3)
С9—Н9		0.9800	C25—	-H25	0.980	0
C10-C11		1.533 (4)	C26—	-C27	1.534	(5)
C10—H10A		0.9700	C26—	-H26A	0.970	0
C10—H10B		0.9700	C26—	-H26B	0.970	0
C11—C12		1.552 (3)	C27—	-C28	1.555	(4)
C11—H11A		0.9700	C27—	-H27A	0.970	0
C11—H11B		0.9700	C27—	-H27B	0.970	0
C12—C13		1.512 (4)	C28—	-C29	1.510	(4)
C12—C14		1.571 (3)	C28—	-C30	1.559	(3)
C13—H13A		0.9600	C29—	-H29A	0.960	0
C13—H13B		0.9600	C29—	-H29B	0.960	0
C13—H13C		0.9600	C29—	-H29C	0.960	0
C14—C15		1.516 (4)	C30—	-C31	1.528	(4)
C14—C16		1.549 (3)	C30—	-C32	1.525	(3)
C15—H15A		0.9600	C31—	-H31A	0.960	0
C15—H15B		0.9600	C31—	-H31B	0.960	0
C15—H15C		0.9600	C31—	-H31C	0.960	0
C16—H16A		0.9600	C32—	-H32A	0.960	0
C16—H16B		0.9600	C32—	-H32B	0.960	0
C16—H16C		0.9600	C32—	-H32C	0.960	0
N1—C1—C8		124.23 (19)	N3—0	C17—C24	124.4	6 (19)
N1—C1—C12		128.5 (2)	N3—0	C17—C28	128.6	(2)

C8—C1—C12	107.24 (18)	C24—C17—C28	106.85 (19)
C1—N1—C2	113.48 (18)	C17—N3—C18	113.25 (19)
N1—C2—C3	118.2 (2)	N3—C18—C19	118.16 (19)
N1—C2—C7	121.72 (19)	N3—C18—C23	122.47 (18)
C3—C2—C7	120.05 (19)	C19—C18—C23	119.35 (19)
C4—C3—C2	119.3 (2)	C20-C19-C18	119.8 (2)
С4—С3—Н3	120.3	С20—С19—Н19	120.1
С2—С3—Н3	120.3	С18—С19—Н19	120.1
C3—C4—C5	120.9 (2)	C19—C20—C21	120.8 (2)
C3—C4—Cl1	119.35 (19)	C19—C20—Cl3	119.33 (18)
C5—C4—Cl1	119.72 (18)	C21—C20—Cl3	119.89 (17)
C6—C5—C4	120.8 (2)	C22—C21—C20	120.2 (2)
C6—C5—Cl2	118.45 (19)	C22—C21—Cl4	119.14 (18)
C4—C5—Cl2	120.74 (18)	C20—C21—Cl4	120.62 (17)
C5—C6—C7	119.6 (2)	C21—C22—C23	119.9 (2)
С5—С6—Н6	120.2	C21—C22—H22	120.1
С7—С6—Н6	120.2	С23—С22—Н22	120.1
N2—C7—C6	117.5 (2)	N4—C23—C22	117.9 (2)
N2—C7—C2	123.25 (19)	N4—C23—C18	122.15 (18)
C6—C7—C2	119.2 (2)	C22—C23—C18	119.9 (2)
C8—N2—C7	113.00 (19)	C24—N4—C23	113.4 (2)
N2	124.31 (19)	N4—C24—C17	124.2 (2)
N2—C8—C9	129.3 (2)	N4—C24—C25	129.9 (2)
C1—C8—C9	106.22 (18)	C17—C24—C25	105.84 (19)
C8—C9—C10	104.05 (18)	C24—C25—C26	103.69 (19)
C8—C9—C14	99.52 (18)	C24—C25—C30	100.70 (19)
C10—C9—C14	102.10 (19)	C26—C25—C30	102.4 (2)
С8—С9—Н9	116.3	С24—С25—Н25	116.0
С10—С9—Н9	116.3	С26—С25—Н25	116.0
С14—С9—Н9	116.3	С30—С25—Н25	116.0
C9—C10—C11	104.06 (19)	C27—C26—C25	103.6 (2)
C9—C10—H10A	110.9	С27—С26—Н26А	111.0
C11-C10-H10A	110.9	С25—С26—Н26А	111.0
C9—C10—H10B	110.9	С27—С26—Н26В	111.0
C11—C10—H10B	110.9	С25—С26—Н26В	111.0
H10A—C10—H10B	109.0	H26A—C26—H26B	109.0
C10—C11—C12	104.48 (18)	C26—C27—C28	104.4 (2)
C10-C11-H11A	110.9	С26—С27—Н27А	110.9
C12—C11—H11A	110.9	С28—С27—Н27А	110.9
C10-C11-H11B	110.9	С26—С27—Н27В	110.9
C12—C11—H11B	110.9	С28—С27—Н27В	110.9
H11A—C11—H11B	108.9	H27A—C27—H27B	108.9
C1—C12—C13	115.7 (2)	C29—C28—C17	115.0 (2)
C1—C12—C11	102.89 (18)	C29—C28—C30	119.7 (2)
C13—C12—C11	115.9 (2)	C17—C28—C30	99.48 (19)
C1—C12—C14	99.56 (18)	C29—C28—C27	115.7 (3)
C13—C12—C14	119.1 (2)	C17—C28—C27	103.3 (2)
C11—C12—C14	101.02 (19)	C30—C28—C27	100.9 (2)
C12—C13—H13A	109.5	C28—C29—H29A	109.5

C12—C13—H13B	109.5	С28—С29—Н29В	109.5
H13A—C13—H13B	109.5	H29A—C29—H29B	109.5
С12—С13—Н13С	109.5	С28—С29—Н29С	109.5
H13A—C13—H13C	109.5	H29A—C29—H29C	109.5
H13B—C13—H13C	109.5	H29B—C29—H29C	109.5
C15—C14—C16	108.1 (2)	C31—C30—C32	107.8 (2)
C15—C14—C9	113.9 (2)	C31—C30—C25	112.7 (2)
C16—C14—C9	113.3 (2)	C32—C30—C25	114.0 (2)
C15—C14—C12	113.9 (2)	C31—C30—C28	114.4 (2)
C16—C14—C12	112.9 (2)	C32—C30—C28	113.4 (2)
C9—C14—C12	94.46 (17)	C25—C30—C28	94.44 (18)
C14—C15—H15A	109.5	С30—С31—Н31А	109.5
C14—C15—H15B	109.5	С30—С31—Н31В	109.5
H15A—C15—H15B	109.5	H31A—C31—H31B	109.5
C14—C15—H15C	109.5	С30—С31—Н31С	109.5
H15A—C15—H15C	109.5	H31A—C31—H31C	109.5
H15B—C15—H15C	109.5	H31B—C31—H31C	109.5
C14—C16—H16A	109.5	С30—С32—Н32А	109.5
C14—C16—H16B	109.5	С30—С32—Н32В	109.5
H16A—C16—H16B	109.5	H32A—C32—H32B	109.5
C14—C16—H16C	109.5	С30—С32—Н32С	109.5
H16A—C16—H16C	109.5	H32A—C32—H32C	109.5
H16B—C16—H16C	109.5	H32B—C32—H32C	109.5

Fig. 1

